
Adaptive Decompositions of General Flows and Their Applications

YU. K.DEM’YANOVICH
Department of Parallel Algorithms
Saint Petersburg State University

University nab. 7/9 Saint Petersburg
RUSSIA

y.demjanovich@spbu.ru

Abstract:Adaptive algorithms of spline-wavelet decomposition in a linear space over metrized fields are proposed.
The algorithms provide a priori given estimate of the deviation of the main flow from the initial one. Comparative
estimates of data of the main flow under different characteristics of the irregularity of the initial flow are done.
The limiting characteristics of data, when the initial flow is generated by abstract differentiable functions, are
discussed. The constructions of adaptive grid and pseudo-equidistant grid and relative quantity of their knots
are considered, flows of elements of linear normed spaces and formulas of decomposition and reconstruction are
discussed. Wavelet decomposition of the flows is obtained with using of spline-wavelet decomposition. Sufficient
condition of the construction is obtained. Applications to different spaces of matrix of fixed order and to spaces of
infinite-dimension vectors with numerical elements (rational, real, complex andp-adic elements) are considered.
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1 Introduction
Many studies have been devoted to the investigation
of numerical flows (signals). There is the theory of
filtration, the theory of classical wavelets, the theory
of spline-wavelets (see, for example, monographs [1]
– [3] and bibliography there). There exist many im-
plementations of wavelets in different practical inves-
tigations (for instance, see [4] – [6], [27] – [29]).

For classical wavelet decomposition (see [2] -
[18]) the translation invariance of the spaces, the
multiple-scale analysis, and Fourier transformer are
required; that creates great difficulties for the con-
struction of adaptive algorithms for processing nu-
merical flows. Adaptive spline-wavelet expansions
use approximate relations for constructing nested
spline spaces on non-uniform grids (see [24] – [26]).

In papers [24] - [25], algorithms of adaptive
spline-wavelet decomposition for numerical flows are
proposed. The construction of spline-wavelet de-
compositions of flow of a more general nature than
real numerical flow (i.e. flow of elements of lin-
ear normed space, flow of matrices or flow of p-
adic numbers), encounters difficulties in implement-
ing relevant generalizations of splines. We overcome
these difficulties by a special construction: according
to properties of spline-wavelet decomposition (see
[24]) the construction of the main flow reduces to the
trace operation over initial flow on the enlargement
of the initial grid. Thus, for obtaining the adaptive
main flow of spline-wavelet decomposition it is suf-
ficient to construct adaptive approximation of the ini-

tial flow.
Aim of this paper to propose algorithms for the

construction of the main flow in adaptive spline-
wavelet decomposition for flows of the elements of
a linear normed space. Under condition of the same
approximation we consider the ratio of the volume of
the main flow mentioned above to the volume of the
main flow obtained with a pseudo-equidistance grid.
The limit characteristics are discussed in the case of
the flow generated by differentiable function.

In the paper we consider construction of adaptive
grid and pseudo-equidistant grid, relative quantity of
knots, flows of elements of linear normed spaces, ap-
proximations of these flows connected with different
grids, embedded spaces, calibration relations and for-
mulas of decomposition and reconstruction. Wavelet
decomposition of the flows is obtained with using of
spline-wavelet decomposition. Sufficient condition
of the construction is linear independence over cer-
tain space (note the condition are right if the normed
space isIR1). Applications are discussed at the end
of the paper: obtained results are applied to different
spaces of matrix of fixed order with numerical ele-
ments (rational, real, complex andp-adic elements).
The results are also applied to spaces of infinite-
dimension vectors.

2 Auxiliary assertions
Here we introduce some notation used in the follow-
ing.
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2.1 Construction of adaptive grid
Let (α, β) be an interval of real axisIR1, let Ξ be a
grid with rational knotsξi ∈ (α, β), i ∈ Z,

Ξ : . . . < ξ−2 < ξ−1 < ξ0 < ξ1 < ξ2 . . . , (1)

lim
i→−∞

ξi = α, lim
i→+∞

ξi = β.

If d ∈ Ξ then there existsi ∈ Z such thatd = ξi;
denoted− = ξi−1 andd+ = ξi+1. Discussc, d ∈ Ξ
andc+ < d−; by definition, put]c, d[ = {c ≤ ξs ≤
d, ξs ∈ Ξ}. The set]c, d[ is called the grid segment.

Supposea, b ∈ Ξ, , a = ξ0, b = ξM , M ∈ Z,
a+ < b−. LetC ]a, b[ be the linear finite-dimensional
space of functionsu(t) defined for t ∈]a, b[ and
‖u‖C ]a,b[ = maxt∈ ]a,b[ |u(t)|.

Let f be a function defined onΞ and such that

f(t) ≥ C0 ∀t ∈ ]a, b[ , C0 = const > 0. (2)

By definition, put

ε∗ = max
ξ∈ ]a,b[

max
t∈{ξ,ξ+}

f(t)(ξ+ − ξ), (3)

ε∗∗ = (b− a)‖f‖C ]a,b[ . (4)

Lemma 1 If ε ∈ (ε∗, ε∗∗) and conditions (2) – (4)
are fulfilled, then there exist the unique natural inte-
gerK = K(f, ε, Ξ) and the gridX̃ ⊂ ]a, b[ ,

X̃ = X̃(f, ε,Ξ) :

a = x̃0 < x̃1 < . . . < x̃K ≤ x̃K+1 = b (5)

such that

max
t∈ ]x̃s, x̃s+1 [

f(t)(x̃s+1 − x̃s) ≤ ε <

< max
t∈ ]x̃s, x̃+

s+1 [
f(t)(x̃+

s+1 − x̃s) (6)

∀s ∈ {0, 1, . . . ,K − 1},
max

t∈ ]x̃K , b [
f(t)(b− x̃K) ≤ ε, X̃ ⊂ Ξ. (7)

The proof of Lemma 1 is given by mathemati-
cal induction as to parameters; the induction is the
source of the algorithm for the construction of grid
(5) with properties (6) – (7) (see [24], see also an il-
lustrative example there);the grid is calledthe adap-
tive grid.

Summation of relations (6) leads to inequality

K−1∑

s=0

max
t∈ ]x̃s, x̃s+1 [

f(t)(x̃s+1 − x̃s) ≤ Kε <

<
K−1∑

s=0

max
t∈ ]x̃s, x̃+

s+1 [
f(t)(x̃+

s+1 − x̃s). (8)

2.2 Pseudo-equidistant grid
By definition, put

ε∗ = max
ξ∈ ]a,b− [

(ξ+ − ξ)‖f‖C ]a,b [. (9)

Under the condition of

ε ∈ (ε∗, ε∗∗) (10)

wediscuss values1

N = N(f, ε,Ξ) = dε∗∗/εe+1, 4 ≤ N < M, (11)

and

h = h(f, ε, Ξ) =
b− a

N
. (12)

Supposethereexists a grid

X = X(f, ε,Ξ) :

a = x0 < x1 < . . . < xN = b, X ⊂ Ξ, (13)

where

h/p ≤ xs+1 − xs ≤ ph, p = const, p ≥ 1,
(14)

s ∈ {0, 1, . . . , N − 1}.
In the next we add a knotxN+1 ∈ Ξ to the grid X,
wherexN+1 > xN and

xN+1 − xN ≤ ph. (15)

Supposethat

ε < h‖f‖C]a,b[ ≤ ε
(
1 +

1
N

)
. (16)

Using(12)and (16), we get

(b− a)‖f‖C ]a,b [ − ε < Nε ≤
≤ (b− a)‖f‖C ]a,b [. (17)

Taking into account inequalities (14) – (15) and
formulas (11) – (12), we obtain

max
t∈ ]xs, xs+1 [

f(t) (xs+1 − xs) ≤ max
t∈ ]xs, xs+1 [

f(t)ph =

= max
t∈ ]xs, xs+1 [

f(t)p
b− a

dε∗∗/εe+ 1
≤

≤ max
t∈ ]xs, xs+1 [

f(t)p
b− a

ε∗∗/ε
=

max
t∈ ]xs, xs+1 [

f(t)p ε(b− a)/ε∗∗;

thus by (4) we have

max
t∈ ]xs, xs+1 [

f(t) (xs+1 − xs) ≤ p ε, (18)

s ∈ {0, 1, . . . , N}.
Grid (13) with properties (14) – (17) is named

pseudo-equidistant grid with mesh widthh.
1For value r the expressiondre is integer numberk with

property0 ≤ k − r < 1.
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2.3 Relative quantity of knots
Let’s suppose that functionf(t) is continuous on seg-
ment[a, b], and

f(t) ≥ C0 > 0 ∀t ∈ [a, b]. (19)

Consider the sequence of gridsΞ(λ),

Ξ(λ) : . . . < ξ−1(λ) < ξ0(λ) < ξ1(λ) < . . . , (20)

depending on parameterλ > 0 such thata, b ∈ Ξ(λ).
By definition, put

]a, b [λ= Ξ(λ) ∩ [a, b], hλ = max
ξ∈ ]a,b− [

(ξ+ − ξ).

Theorem 2 If functionf(t) is continuous and sat-
isfies condition (19), and the sequence of grids (20)
such that

lim
λ→+0

hλ = 0, (21)

then the relation

lim
ε→+0

lim
λ→+0

N

K
=

‖f‖C[a,b]

1
b−a

∫ b
a f(t)dt

(22)

is true.

Relation (22) follows from (8) and (17) by simple
processing and passing to the limit.

3 Flows and their approximations

Let F be a metrized field2; the appropriate metric is
denoted by| · | and it has the following properties: a)
|f | ≥ 0 ∀f ∈ F , and|f | = 0 ⇐⇒ f = 0, b) the
relations|f + g| ≤ |f |+ |g| and c)|fg| = |f ||g| are
right ∀f, g ∈ F .

Consider linear normed spaceM over fieldF ;
let ‖ · ‖ be a norm in the space.

Denote by CM ]a, b [ the linear finite-
dimensional space of abstract functionsU(t),
t ∈ ]a, b [, with values of the functions3 in spaceM.
Let

‖U‖CM ]a,b [ = max
t∈ ]a,b [

‖U(t)‖

be a norm in spaceCM ]a, b [. The elementU(t)
of spaceCM ]a, b [ is called thegeneral flow. Later
we need to use abstract functions defined on segment
[c, d] of the real axis such that their range of values

2Thefield of real numbers, the field of complex numbers and
the field of p-adic numbers are metrized fields (i.e. fields with
evaluation).

3The expression ”abstract function” is often replaced by the
word ”function”; that doesn’t lead to confusion because in all
cases when we discuss an abstract function with values in the
spaceM, we denote it with capital letter or semiboldface type.

is situated inM; for them the differentiation is intro-
duced in the usual way. Therefore we also discuss the
linear spacesCM[c, d], Ci

M[c, d], i = 1, 2, of contin-
uous and of continuously differentiated abstract func-
tions.

Let U(t) be a function defined on grid (1). By
definition, put

DΞU(ξ) =
U(ξ+)− U(ξ)

ξ+ − ξ
,

D2
ΞU(ξ) =

DΞU(ξ)−DΞU(ξ−)
ξ − ξ−

, ξ ∈ Ξ.

Let X̂ bea subset of gridΞ such that

X̂ : a = x̂0 < x̂1 < x̂2 < . . . < x̂
K̂

< x̂
K̂+1

= b.

Let

Ũ(t) = U(x̂j) +
U(x̂j+1)− U(x̂j)

x̂j+1 − x̂j
(t− x̂j)

∀t ∈ [x̂j , x̂j+1), j ∈ {0, 1, . . . , K̂}
be a piecewise linear interpolation of functionU(t),
defined on segment]a, b [.

It is easy to obtain the next assertion.

Theorem 3 If y, z ∈]a, b[, y+ < z− and t ∈]y, z[
then the functionsU(t) andŨ(t) satisfy the relations

‖U(t)− Ũ(t)‖ ≤
≤ 2min{t− y, z − t} max

ξ∈]y, z−[
‖DΞU(ξ)‖, (23)

‖U(t)− Ũ(t)‖ ≤
(z − y) max

ξ∈]y, z−[
‖DΞU(ξ)‖, (24)

‖U(t)− Ũ(t)‖ ≤
≤ (z − y)2 max

ξ∈]y+, z−[
‖D2

ΞU(ξ)‖, t ∈ ]y, z[ .

(25)

Theorem 4 If t ∈ ]x̂j , x̂j+1[ , then inequalities

‖U(t)− Ũ(t)‖ ≤
≤ (x̂j+1 − x̂j) max

ξ∈]x̂j , x̂
−
j+1 [

‖DΞU(ξ)‖, (26)

‖U(t)− Ũ(t)‖ ≤
≤ (x̂j+1 − x̂j)2 max

ξ∈]x̂+
j , x̂−j+1 [

‖D2
ΞU(ξ)‖ (27)

hold.
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If U ∈ C1
M[a, b], y, z ∈ [a, b], t ∈ [y, z] then

‖U(t)− Ũ(t)‖ ≤

≤ max
ξ∈[x̂j ,x̂j+1]

‖U ′(ξ)‖(z − y), (28)

and if U ∈ C2
M[a, b], then

‖U(t)− Ũ(t)‖ ≤

≤ max
ζ∈[y,z]

‖U ′′(ζ)‖(z − y)2. (29)

Proof. The evaluations (26) – (27) fol-
low from inequalities (23) – (25), and the rela-
tions (28) – (29) come out by passage to the
limit in formulas (26) – (27) under condition
max

ξ∈]y, z−[ (ξ+ − ξ) → +0.4

4 On number of grid knots

4.1 A grid of adaptive type
Theorem 5 Suppose that

‖DΞU(t)‖ ≥ C0 ∀t ∈ Ξ, C0 = const > 0. (30)

If η > 0, and grid X̂ coincides with grid
X̃(‖DΞU(t)‖, η,Ξ), then

1) the quantity of knots K ′
U,Ξ(η) =

K(‖DΞU(t)‖, η,Ξ) of the grid satisfy relations

K−1∑

s=0

max
t∈ ]x̃s, x̃s+1 [

‖DΞU(t)‖(x̃s+1 − x̃s)/η ≤

≤ K ′
U,Ξ(η) <

<
K−1∑

s=0

max
t∈ ]x̃s, x̃+

s+1 [
‖DΞU(t)‖(x̃+

s+1 − x̃s)/η, (31)

2) inequality

‖U(t)− Ũ(t)‖ ≤ η ∀t ∈ ]a, b [ (32)

is true,
3) if there are sequences of grids (20) with con-

dition (21) and functionU ∈ C1
M[a, b], for which

‖U ′(t)‖ ≥ C0 > 0 ∀t ∈ [a, b], then relation

lim
η ′→+0

lim
λ→+0

K ′
U,Ξ(λ)(η

′)η ′ =
∫ b

a
‖U ′(t)‖dt

(33)
is fulfilled.

4Evaluations(23) – (29) aren’t precise, but that isn’t actual in
discussed case.

Proof: Formula (31) follows from relation (8),
where it needs to putf(t) = ‖DΞU(t)‖. Under con-
dition (30) inequality (32) follows from (23) and (6),
wheref(t) = ‖DΞU(t)‖, ε = η. Finally, formula
(33) follows from (31) by passing to the limit.

Theorem 6 Suppose that a condition

‖D2
ΞU(t)‖ ≥ C0 ∀t ∈ ]y, z[ , C0 = const > 0

(34)
is fulfilled. If η > 0 and grid X̂ coincides with grid

X̃(
√
‖D2

ΞU(t)‖, η,Ξ), then

1) quantity of knots K ′′
U,Ξ(η) =

K(
√
‖D2

ΞU(t)‖, η,Ξ) of the grid satisfies rela-
tions

K−1∑

s=0

max
t∈]x̃s, x̃s+1[

√
‖D2

ΞU(t)‖(x̃s+1−x̃s)/η ≤ K ′′
U,Ξ(η) <

<
K−1∑

s=0

max
t∈]x̃s, x̃+

s+1[

√
‖D2

ΞU(t)‖(x̃+
s+1−x̃s)/η, (35)

2) the inequality

‖U(t)− Ũ(t)‖ ≤ η2 ∀t ∈ ]a, b[ (36)

is true,
3) if there is a sequence of grids (20) with prop-

erty (21), then for arbitrary functionU ∈ C2
M[a, b],

for which‖U ′′(t)‖ ≥ c > 0 ∀t ∈ [a, b], we have

lim
η ′→+0

lim
λ→+0

K ′′
U,Ξ(λ)(η

′)η ′ =
∫ b

a

√
‖U ′′(t)‖dt.

(37)

Proof of this Theorem is analogous to the proof
of Theorem 5.

4.2 Pseudo-equidistant grid

Theorem 7 If grid X̂ coincides with grid
X(‖DΞU‖, η/p,Ξ), then

1) the numberN ′
U,Ξ(η) = N(‖DΞU‖, η/p, Ξ)

of inner knots of the grid satisfies the relation

p(b− a)‖DΞU‖CM ]a,b [/η − 1 < N ′
U,Ξ(η) ≤

≤ p(b− a)‖DΞU‖CM ]a,b [/η, (38)

2) inequality

‖U(t)− Ũ(t)‖ ≤ η ∀t ∈ ]a, b [ (39)

is right.

WSEAS TRANSACTIONS on SIGNAL PROCESSING Yu. K. Dem’yanovich

E-ISSN: 2224-3488 133 Volume 14, 2018



Proof: Considering grid X̂ =
X(‖DΞU‖, η/p,Ξ), we apply formula (17); as
a result we get the relation (38). The inequal-
ity (39) follows from relations (26) and (18) if
f(t) = ‖DΞU(t)‖ andε = η/p.

Theorem 8 If grid X̂ coincides with grid

X(
√
‖D2

ΞU‖, η/p,Ξ), then

1) the quantity N ′′
U,Ξ(η) =

N(
√
‖D2

ΞU‖, η/p,Ξ) of inner knots of that grid
satisfies relation

p(b−a)‖ ‖D2
ΞU(t)‖1/2‖CM]a, b[ /η−1 < N ′′

U,Ξ(η) ≤

≤ p(b− a)‖ ‖D2
ΞU(t)‖1/2‖CM]a, b[ /η, (40)

2) inequality

‖U(t)− Ũ(t)‖ ≤ η2 ∀t ∈ ]a, b[ (41)

is true.

Proof. By analogy with the proof of pre-
vious theorem we apply formula (17) tôX =
X(

√
‖D2

ΞU‖, η/p,Ξ); it follows relation (40). The
inequality (41) can be obtained by application of re-

lations (18) and (27), wheref =
√
‖D2

ΞU‖ and
ε = η/p.

4.3 Comparative characteristics of the
quantity of knots

Theorem 9 Suppose that abstract functionU(t)
is approximated by functioñU(t) with evaluation
‖Ũ(t) − U(t)‖ ≤ η under two choices of grid: in
the first variant the pseudo-equidistant grid is used
such thatX̂ = X(‖DΞU‖, η/p,Ξ), and in the sec-
ond variant the adaptive grid̂X = X̃(‖DΞU‖, η,Ξ)
is used; then we have

p(b− a)‖DΞU‖CM]a, b[ − η
∑K−1

s=0 maxt∈]x̃s, x̃+
s+1[ ‖DΞU(t)‖(x̃+

s+1 − x̃s)
<

<
N ′

U,Ξ(η)
K ′

U,Ξ(η)
≤

≤
p(b− a)‖DΞU‖CM]a, b[∑K−1

s=0 maxt∈]x̃s, x̃s+1[ ‖DΞU(t)‖(x̃s+1 − x̃s)
.

(42)

Formula (42) follows from inequalities (31) – (32)
and (38) – (39).

Theorem 10 Consider the family of grids (20) –
(21). LetU(t), t ∈ [a, b], be a continuously differ-
entiable function with property

‖U ′‖CM[a,b] 6= 0; (43)

then

lim
η→+0

lim
λ→+0

K ′
U,Ξ(η)

N ′
U,Ξ(η)

=
1

b−a

∫ b
a ‖U ′(t)‖dt

p‖U ′‖CM[a,b]
. (44)

Proof: Underthe conditions of (43) we can dis-

cuss ratio
K ′

U,Ξ(η)

N ′
U,Ξ(η) ; the passing to the limit in (42)

gives the correlation (44).

Theorem 11 Suppose the construction of approx-
imationsŨ(t) of discrete functionU(t) with evalu-
ation ‖Ũ(t) − U(t)‖ ≤ η2 is accompanied by two
variants of grids: in the first variant the pseudo-

equidistant gridX̂ = X(
√
‖D2

ΞU‖, η/p,Ξ) is uti-
lized, and in the second variant the adaptive grid

X̂ = X̃(
√
‖D2

ΞU‖, η,Ξ) is applied; then we have

p(b− a)‖ ‖D2
ΞU(t)‖1/2‖CM]a, b[ − η

∑K−1
s=0 maxt∈]x̃s, x̃+

s+1[

√
‖D2

ΞU(t)‖(x̃+
s+1 − x̃s)

<

<
N ′′

U,Ξ(η)
K ′′

U,Ξ(η)
≤

≤
p(b− a)‖ ‖D2

ΞU‖1/2‖CM]a, b[
∑K−1

s=0 maxt∈]x̃s, x̃s+1[

√
‖D2

ΞU(t)‖(x̃s+1 − x̃s)
.

(45)

Evaluation(45) follows from inequalities (35) –
(36) and (40) – (41).

Theorem 12 Let’s discuss a family of grid (20) with
property (21). Suppose an abstract functionU(t) is
twice continuously differentiated on the segment[a, b]
and has a property

‖U ′′‖CM[a,b] 6= 0; (46)

then

lim
η→+0

lim
λ→+0

N ′′
U,Ξ(η)

K ′′
U,Ξ(η)

=
1

b−a

∫ b
a

√‖U ′′(t)‖dt

p‖√‖U ′′(t)‖‖CM[a,b]

.

(47)

Undercondition(46) the relation (47) follows by the
passing to the limit in (45).
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5 Wavelet support

We considered the construction of embedded grids
and evaluation of approximations before. In this sec-
tion we suppose that embedded grids have been con-
structed; here we discuss calibration relations, which
are wavelet support in the next discussion.

5.1 Embedded grid
Let m be a natural number; by definition, put

Jm = {0, 1, . . . , m}, J ′
m = {−1, 0, 1, . . . ,m}.

Consider the functions{ωj(t)}j∈J ′M−1
as ele-

ments of the spaceC]a, b[ :

ωj(ξs) = δs,j+1, s ∈ JM .

Let g(i), i ∈ J ′
M−1 be the linear functionals defined

by relations

〈g(i), u〉 = u(ξi+1) ∀u ∈ C]a, b[. (48)

The system{ωj}j∈J ′M−1
is the basis of the space

C]a, b[; we have

〈g(i), ωj〉 = δi,j ∀ i, j ∈ J ′
M−1.

In further we discuss a set]c, d[ as an empty set
if c > d.

Suppose5 ≤ K < M . Consider an injective
mapκ of the setJK to the setJM such that

κ(0) = 0, κ(i) < κ(i + 1), κ(K) = M. (49)

Let J∗ ⊂ JM be the set defined by the formula

J∗ = κJK . (50)

In view of (49) – (50) the revised mapκ−1 defined on
the setJ∗ uniquely:∀r ∈ J∗ κ−1 : r −→ s, s ∈
JK , JK = κ−1J∗.

Let

X̂ : a = x̂0 < x̂1 < . . . < x̂K = b

be a new grid with knotŝxi = ξκ(i), i ∈ JK .
Sometimes we discuss additional knotsξ−1 and

x̂−1 with propertyξ−1 = x̂−1 < a.

5.2 Calibration relations
Consider functionŝωj(t), j ∈ J ′

K−1 defined by rela-
tions

ω̂i(t) = (t− ξκ(i))(ξκ(i+1) − ξκ(i))
−1

for t ∈]ξ +
κ(i), ξκ(i+1)[, i ∈ JK−1, (51)

ω̂i(t) = (ξκ(i+2) − t)(ξκ(i+2) − ξκ(i+1))
−1

for t ∈]ξκ(i+1), ξ
−
κ(i+2)[, i ∈ J ′

K−2; (52)

ω̂i(t) = 0 for t ∈]a, b[ \ ]ξ +
κ(i), ξ

−
κ(i+2)[. (53)

It is clear to see that

ω̂i(ξκ(i+1)) = 1 ∀i ∈ J ′
K−1. (54)

Splinesω̂i could be written as linear combina-
tions of splinesωj :

ω̂r(t) =
∑

q∈J ′M−1

p r,qωj(t) ∀t ∈]a, b[, r ∈ J ′
K−1;

(55)
formulas (55) are calledcalibration relations.

Applying the functionalsg(j) to (55) and taking
into account relations (48), we have

p−1,j = ω̂−1(ξj+1)

∀j ∈ {κ(0)− 1, κ(0), . . . , κ(1)− 2}, (56)

p i,j = ω̂i(ξj+1)

∀j ∈ {κ(i), . . . , κ(i + 2)− 2} ∀i ∈ JK−2, (57)

pK−1,j = ω̂K−1(ξj+1)

∀j ∈ {κ(K − 1), . . . , κ(K)− 1}; (58)

the numberspr,s, r ∈ J ′
K−1, s ∈ J ′

M−1, which are
absent in these formulas, are equal to zero.

Consider functionals

〈ĝ(i), u〉 = u(x̂i+1) ∀u ∈ C]a, b[, i ∈ J ′
K−1. (59)

By (51) – (54) and (59) we have

〈ĝ(i), ω̂j〉 = δi,j ∀i, j ∈ J ′
K−1. (60)

Using the relations (48) – (50) and (59), for arbi-
traryu ∈ C]a, b[ andi ∈ J ′

K−1 we have

〈ĝ(i), u〉 = u(x̂i+1) = 〈gκ(i+1)−1, u〉;

thus the equalities

ĝ(i) = g(κ(i+1)−1) i ∈ J ′
K−1 (61)

are true. By (61) we have

ĝ(κ−1(j+1)−1) = g(j) ∀j + 1 ∈ J∗. (62)
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5.3 Matrix of restriction
Discuss matrixP = (pi,j)i∈J ′K−1,j∈J ′M−1

; here

pi,j = 〈g(j), ω̂i〉. The matrixP is calleda restriction
matrix. We introduce the ascending ordered subsets
of setZ:

J0 = {−1, . . . , κ(1)− 2},

J1(r) = {κ(r), . . . , κ(r + 1)− 1} ∀r ∈ JK−1,

J2(r) = {κ(r+1), . . . , κ(r+2)−2} ∀r ∈ JK−2,

J(r) = J1(r)
⋃

J2(r) ∀r ∈ JK−2,

J(K − 1) = J1(K − 1).

The ascending ordered set will be discussed as empty
if its first element is more then last one.

Theorem 13 The coefficientsp r,q of the calibration
relations (55) might be written in next form

p−1,q =
ξκ(1) − ξq+1

ξκ(1) − ξκ(0)
q ∈ J0, (63)

pr,q =
ξq+1 − ξκ(r)

ξκ(r+1) − ξκ(r)

q ∈ J1(r), r ∈ JK−1, (64)

pr,q =
ξκ(r+2) − ξq+1

ξκ(r+2) − ξκ(r+1)

q ∈ J2(r), r ∈ JK−2, (65)

with elementspr,q unmentioned in formulas (63) –
(65) equal to zero.

Proof. First of all we note that relations (64) and
(65) aren’t converse to each other, because for datar
the setsJ1(r) andJ2(r) aren’t intersects. It’s clear
to see that formulas (63) – (65) follow from relations
(56) – (58) by correlations (51) – (54).

Corrolary 5.1 The formula

pi,j = δi,κ−1(j+1)−1 ∀i ∈ J ′K−1, j+1 ∈ J∗.
(66)

is right.

Proof. Using the relationspi,j = 〈g(j), ω̂i〉, for-
mula (62) and property (60), we have

pi,j = 〈g(j), ω̂i〉 = 〈ĝ(κ−1(j+1)−1), ω̂i〉,

for all i ∈ J ′
K−1; hence we get relation (66).

5.4 Matrix of prolongation
Consider matrixQ = (qs,j)s∈J ′K−1, j∈J ′M−1

with el-
ements

qs,j = 〈ĝ(s), ωj〉; (67)

the matrixQ is calledthe matrix of prolongation.
Taking into account the formulas (59), (67), we

obtain the next assertions.

Theorem 14 In the matrixQ
1) if j+1 /∈ J∗, then columnq(j) = (qsj)s∈J ′K−1

is zero column;
2) if j +1 ∈ J∗, then columnq(j) contains a unit

on thes0-th place, whereκ(s0+1) = j+1; the other
elements of the column are equal to zero.

Theorem 15 The matrixQ is left inverse matrix for
the matrixP T :

QP T = I;

hereI is the identity matrix of sizeK + 1×K + 1.

Theorem 16 Elements[P T Q]i,j , i, j ∈ J ′
M−1, of a

matrix productionP T Q are defined by formulas

[P T Q]i,j = 0 for i ∈ J ′
M−1, j + 1 ∈ JM\J∗,

[P T Q]i,j = pκ−1(j+1)−1,i for i ∈ J ′
M−1, j+1 ∈ J∗.

Corrolary 5.2 If i + 1, j + 1 ∈ J∗, then

[P T Q]i,j = δi,j .

6 General flows and their recon-
struction

Consider linear spaces

S = S(X,ϕ,M) = {u | u(t) =

=
∑

j∈J ′M−1

Cjωj(t) ∀Cs ∈M ∀j ∈ J ′M−1, t ∈]a, b[},

Ŝ = S(X̂, ϕ,M) = {u | u(t) =

=
∑

i∈J ′K−1

Aiω̂i(t) ∀As ∈M ∀s ∈ J ′K−1, t ∈]a, b[}.

Taking into account calibration relations (55), we
haveŜ ⊂ S ⊂ CM]a,b[.

Suppose there is the next equivalence

∑

j∈J ′M−1

Cjωj(t) ≡ 0 ∀t ∈]a, b[ ⇐⇒

⇐⇒ Cj = 0 ∀j ∈ J ′M−1. (68)
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If (68) is fulfilled then we say thatthe system
{ωj}j∈J ′M−1

is linear independent over spaceS.
Let P be an operation of projection for spaceS

on spacêS defined by formula

Pu =
∑

s∈J ′K−1

∑

j∈J ′M−1

Cj〈ĝ(s), ωj〉ω̂s

∀u =
∑

j∈J ′M−1

Cjωj ∈ S. (69)

By definition, put

〈ĝ(s),u〉 =
∑

j∈J ′M−1

Cj〈ĝ(s), ωj〉;

by (69) we have

Pu(t) = 〈ĝ(k−1),u〉ω̂k−1(t) + 〈ĝ(k),u〉ω̂k(t)

∀t ∈ t ∈]x̂k, x̂k+1[, k ∈ JK−1.

The operationP defines direct decomposition of
linear spaceS:

S = S +W. (70)

The spaceS is namedthe initial space; linear
spacesŜ andW are calledthe main spaceand the
wavelet spacerespectively.

LetC = (C−1,C0,C1, . . . ,CM−1)T be the ini-
tial flow of elements from spaceM. By definition,
put

u =
∑

s∈J ′M−1

Csωs. (71)

Using relation (70), we get the second represen-
tation of the elementu:

u = û + w, (72)

where

û =
∑

i∈J ′K−1

Aiω̂i, w =
∑

j∈J ′M−1

Bjωj ,

Bj , Cs ∈M ∀j, s ∈ J ′
M−1,

Ai = 〈ĝ(i),u〉 ∀i ∈ J ′
K−1. (73)

By (71) – (72) we have
∑

j∈J ′M−1

Cjωj =
∑

i∈J ′K−1

Ai

∑

j∈J ′M−1

pi,jωj+

+
∑

j∈J ′M−1

Bjωj ,

whence taking into account the linear independence
of the system{ωj}j∈J ′M−1

over spaceS, we getthe
formulas of reconstruction

Cj =
∑

i∈J ′K−1

pi,jAi + Bj ∀j ∈ J ′
M−1. (74)

7 Formulas of decomposition

Using representation (73), we rewrite formulas (74)
in the form

Cj =
∑

i∈J ′K−1

〈ĝ(i),u〉pi,j + Bj ∀j ∈ J ′
M−1

and taking into account (71), we have

Cj =
∑

i∈J ′K−1

∑

s∈J ′M−1

Cs〈ĝ(i), ωs〉pi,j + Bj

∀j ∈ J ′
M−1;

now we get

Bj = Cj −
∑

s∈J ′M−1

( ∑

i∈J ′K−1

qi,spi,j

)
Cs. (75)

Substituting (71) in (73), we have

Ai = 〈ĝ(i),
∑

s∈J ′M−1

Csωs〉 ∀i ∈ J ′
K−1;

therefore

Ai =
∑

s∈J ′M−1

qi,sCs ∀i ∈ J ′
K−1. (76)

The formulas (75) – (76) are calledthe formulas of
decomposition.

Using the vectors

A = (A−1,A0, . . . ,AK−1)T ,

B = (B−1,B0, . . . ,BM−1)T ,

we rewrite formulas (74) and (75) – (76) in matrix
form: the formulas of decomposition (75) – (76) take
the form

A = QC, B = C− P T QC,

and the formulas of reconstruction (74) are repre-
sented as

C = P TA + B.

Using obtained assertions (see Theorems 13 and
14) for the elements of matricesP andQ, we get the
following propositions.

Theorem 17 The formulas of decomposition have
the following properties

Ai = Cκ(i+1)−1 ∀i ∈ J ′
K−1, (77)

Bq = 0 ∀q + 1 ∈ J∗, (78)

Bq = Cq −
∑

j∈J ′K−1

〈g(q), ω̂j〉Cκ(j+1)−1 (79)

∀q + 1 ∈ JM\J∗.
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Theorem18 The wavelet flow satisfies the next re-
lations: for q + 1 ∈ JM\J∗ the equalities

Bq = Cq − (x̂i+1 − x̂i)−1
[
(x̂i+1 − ξq+1)Cκ(i)−1+

+(ξq+1 − x̂i)Cκ(i+1)−1

]

are fulfilled; here

x̂i < ξq+1 < x̂i+1. (80)

The formula (79) can be written in the form

Bq = Cq − pi−1,qCκ(i)−1 − pi,qCκ(i+1)−1,

wherei satisfies relation (80).
The formulas (78) – (79) demonstrate that the

space of wavelet flowsB is

B = {B | B = (B−1,B0, . . . ,BM−1)

∀Bj−1 ∈M, j ∈ JM\J∗;B i−1 = 0 ∀i ∈ J∗}.
The relation (77) indicates that the construction

of the main flow is reduced to values of initial flow
on the embedded grid. If the embedded grid is adap-
tive, then the deviation of the main flow from the
initial flow is defined by Theorem 5, and if the con-
structed grid is the pseudo-equidistant grid, then the
mentioned deviation is given by Theorem 7.

8 Applications
We give important examples of applications for re-
sults mentioned above.

8.1 Spaces of matrices

The transmission of matrix flow across communica-
tion lines is very relevant; it is usually associated with
large volumes of transmitted information, and there-
fore the selection of the main part of this flow is ac-
tual. The main part, apparently, should be transferred
in the first place, and the non-main part (wavelet part)
can be transferred in the second place or not at all.

In practice, matrices with rational elements are
most frequently used; in this case it is possible to con-
sider a linear normed spaceRp×q of p× q-matrices
with real rational elements.

Let F be the field of real rational numbers; we
put M = Rp×q. Since the original gridΞ consists
of rational numbers, and the condition of linear in-
dependence (68) is fulfilled, then the previous results
can be applied to the occasion. The same way the
case of a linear normed spaceM = Cp×q of ma-
trices with complex rational elements is discussed;
condition (68) is also valid here.

Completion of rational numbers leads to new lin-
ear spaces of matrices of sizesp× q. As it is known,
the completion in the standard metric (absolute value)
will lead us to the space of matrices with real ele-
mentsM = Rp×q and to the space of matrices with
complex elementsM = Cp×q over fields of real and
complex numbers, respectively.

On the other hand, the completion of real rational
numbers with respect to thep-adic metric leads to a
linear spaceM = Ap×q matrices, which elements
arep-adic numbers; here we need to discuss the field
F of p-adic numbers.

It is obvious that in all these cases the condition
(68) is valid, so that the results obtained here are
applicable.

8.2 Spaces of infinite vectors

Linear spaces of infinite-dimensional vectors are also
interested because restrictions relative to number of
nonzero component are absent (it is possible to dis-
cuss spaces of infinite matrices, spaces of polynomi-
als with arbitrary degrees and so on).

LetV ∞ be a linear normed space of vectorsv =
(v0, v1, v2, . . .) with rational components; that space
could be discussed over fieldF of the rational num-
bers. Condition (68) is right, thus we can apply the
obtained results forM = V ∞. Supplements of set
of rational numbers with standard metric and with
p-adic metric give the new linear spaces of infinite-
dimensional vectors. Condition (68) is correct for
mentioned spaces, therefore obtained results could be
applied to the spaces.

9 Conclusion

The results give the opportunity to obtain the main
flow in wavelet decomposition for flows of elements
from linear normed spaces; sometimes it is very im-
portant to have decomposition of flows of matrices
or flows of p-adic numbers. The results also demon-
strate a large economy of computer memory in the
case of usage of adaptive algorithms for the construc-
tion of the main flow. Now it is simple to obtain for-
mulas of decomposition and reconstruction.

The transmission of matrix flow across commu-
nication lines is very essential for computer technic
and TV-services; it is associated with large volumes
of transmitted information, and therefore the selec-
tion of the main part of this flow is actual. The main
part of the transmission should be transferred in the
first place, and the non-main part (wavelet part) can
be transferred in the second place or not at all. Such
strategy might be realized by using the results ob-
tained here: the last part of the paper is devoted to
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wavelet decomposition of different spaces of matri-
ces of fixed order with numerical elements (rational,
real, complex andp-adic elements) and to spaces of
infinite-dimension vectors.
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